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FOREWORD

This report has been prepared as part of the final report required under
Contract NSR 22-009-106 between the National Aeronautics and Space
Administration and M.I. T. Lincoln Laboratory. The measurements and
analysis stipulated in the contract separate rather naturally into three
parts: (1) the statistical scattering and polarization properties at several
wavelengths of the mean lunar surface, (2)the local variations in these
properties along the "Apollo belt” associated with different types of lunar
surface, and (3) a comparative analysis of the results obtained under the
present contract and those to be obtained at longer wavelengths under
Grant NGR 33-010-024 between NASA and Cornell University. The lat-

ter grant terminates 31 December 1967.

In order to make results obtained under the present contract available as
rapidly as possible, it has been decided to serialize the final report in
three volumes corresponding to the areas of investigation described
above, Thus, the present report constitutes Vol.1 of the final report
and deals with those experiments which have provided information about
the average properties of the lunar surface as well as with their inter-
pretation. Volume 2 will present the results of a detailed mapping of the
lunar surface radar reflectivity at 3.8-cm wavelength and will be issued
as soon as the full results are available. Volume 3, a report to be pre-
pared jointly with Cornell University, will be prepared immediately fol-

lowing the termination of the Cornell grant.
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RADAR STUDIES OF THE MOON

I. INTRODUCTION

This report presents and reviews part of the results of a study program to assess the
properties of the lunar surface from the earth by radio waves. Only those results which pertain
to the mean properties of the lunar surface are considered in this volume. Results which reveal
physical differences between local regions on the moon will be the subject of a second volume to
be issued in the near future.

The discussion in this report is broken up into three main areas: the total radar cross sec-
tion of the moon, the distribution of the radar echo power in delay and polarization, and the radio-
metric observation of the natural lunar thermal emission. In each of these areas observations
carried out under the contract are presented in the context of previous work and are examined
for their implications as to the structure and properties of the lunar surface.

Although the theoretical derivations and discussions are reasonably complete, they are not
exhaustive, nor was it felt desirable to include here a complete bibliography. A good working
set of recent references is given by Hagfors (1967), and an even more complete list by Evans
(1965). References to QPR (year:number) in the text of this report refer to the Quarterly Prog-

ress Reports which have been issued under this contract over the past two years.

II. RADAR CROSS SECTION
A. Observations

As a part of the studies undertaken in this contract, the total cross section of the moon has
been measured at 23 cm with high precision. Inaccurate knowledge of the radar system parameters
has in the past been the major contributing factor to the uncertainties in the lunar radar cross
section. However, use of the Lincoln Calibration Sphere [QPR (1966:2)], an orbiting satellite
specifically designed for radar calibration, has greatly reduced these uncertainties. The cross

section at 23 cm was found to be (Evans and Hagfors, 1966)
o, = (0.065 % 0.008) ma’ (1)

where a is the radius of the moon. This value was determined using circularly polarized illu-
mination and by observing the orthogonal (symmetrically reflected) sense of circular polarization
on reception. Measurements with comparable accuracy at other wavelengths have not been ac-
complished primarily because of difficulties with the tracking of the calibration sphere. The
most current data on the lunar cross section as a function of wavelength are shown in Fig. 1
expressed as a fraction of the geometrical cross section of the moon. The appropriate refer-
ences may be found in QPR (1966:1),
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Fig. 1. Cross section of moon vs wavelength
with new result at 23 cm added.
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B. Interpretation
If the moon were a perfectly smooth sphere, whose surface is composed of a metallic or
slightly lossy dielectric, the cross section would be

_ 2
g, =P T2 (2)

where P, is the power reflection coefficient at normal incidence to the surface. When the surface
is no longer an ideally smooth sphere, but one which deviates from the spherical shape while

remaining smooth locally, the cross section is modified to
g = 00(1 +oz2) (3)

where o is a measure of the rms slope of the surface undulations. As explained in detail below
it has been found that o« is small enough so that it can be neglected in comparison with unity,

It has become evident — particularly from extensive polarization measurements — that the
return from the moon cannot be completely described as a reflection from a locally smooth, gently
undulating surface. It has been found that the reflection must be thought of as originating in two
different mechanisms: one which is associated with quasi-specular reflection from the gently
undulating surface, and a second which arises as a result of a somewhat more vaguely defined
small-scale diffuse scattering mechanism. On the basis of studies of the power returned as a
function of the angle of incidence, the amount of diffuse power has been estimated to be approx-
imately as shown in Table I for the various wavelengths examined. It must be pointed out that
the estimates given in Table I are crude. Other extrapolation methods may give values consid-
erably less than those quoted. For example, Pettengill and Thompson (1967) have arrived at
12 percent for their 70-cm results,

The presence of a nonspecular backscattering surface component will remove a fraction x
of the surface available for quasi~specular scattering. The total backscattering cross section

may therefore be expressed as

0=00(1—x)+x-0d (4)



TABLE |
PERCENT OF TOTAL POWER IN DIFFUSE RETURN

A
(cm) Percent
68 20
23 25
3.6 35
0.8 85

where % is usually referred to as the cross section of the diffuse component. This cross sec-
tion may be expressed in terms of a mean spherical albedo p and a backscattering gain factor
Gm:

od=G ~p-1ra2 . (5)
Since radar observations so far have been confined to the monostatic case, there is no way of
knowing the spherical albedo of the diffuse component nor the backscattering gain factor Gm.
Kerr and Shain (1951) deduced a value of Gm of 5.7 at optical wavelengths whereas Grieg, et al.
(1948) deduced a gain of 2.7 on the basis of Lambertian scattering from the surface. Assuming,
primarily for lack of a better estimate, that mean spherical albedo § is equal to the specular
power reflection coefficient at normal incidence, the fraction x of the surface responsible for
diffuse scattering comes out to be 8.5 percent at 23-cm wavelength. Because of all the assump-
tions involved this number should only be taken as a very crude estimate.

It has been customary in the past [e.g., Evans and Pettengill {(1963)] to assume that the
reflection coefficient Py is identical to the Fresnel reflection coefficient at normal incidence.
This, of course, assumes that the surface can be represented as a sharp boundary between
vacuum and a homogeneous material with certain electrical properties. On this assumption

we have

NE—1]2

p_= (6)
° lr\/?+1

where ¢ is the {complex) relative dielectric constant of the lunar surface material. On these
assumptions and also assuming negligible losses, the dielectric constant at 23 cm becomes

€ = 2.64. The dielectric constants at both 3.8 cm and 70 cm are close to that at 23 cm on the
basis of the assumptions just spelled out.

Other evidence may indicate that this type of interface is too simple. The top lunar layers
have variously been characterized as dust-layers, as ash-flow deposits or as sandy soil. One
may, therefore, have reason to believe that there is a gradual change with depth in the electrical
properties of the lunar surface material. This variation may take several different forms, two
of which we shall examine in some detail here.

Suppose we have a uniform upper layer with a dielectric constant of €,, and a depth b, and
that this upper layer is supported by a semi-infinite homogeneous medium which has a dielectric
constant €,. The power reflection coefficient can then be determined for the normal incidence

2
case to be



. ei(ﬁ—i)z—(ei——i)(ez—ei) sinz(J'e_ikb) o

° (G + 0P = (e, —1) (e, — €) sin® (JE;kb)

where k = 2r/A (A = wavelength in vacuo).

The quasi-specular return may be regarded as a superposition of "glints" from a large
number of area elements which are favorably oriented for reflection. The depth b at the posi-
tion of these elements may be assumed to be distributed at random in accordance with a proba-

bility density p(b). The mean normal reflectivity is found as follows:

00
PPavg = S; p(b) p (b) db (8)
with po(b) given by Eq. (7). The actual mean reflection coefficient will depend strongly on the
form of the probability density and on the mean depth (b). When the mean depth is either much
smaller than or much greater than )\/4 /ei, however, the form of p(b) is no longer important and

we obtain in the former case

2
(ez -1 )
oD = | — 9
o’avg
/ez + 1
and in the latter case
4 [e, €

172
e+ 0 G+ )

Hence a thin layer is invisible and a thick layer serves to reduce the reflection from what it

Pdavg ™ ! (10)

would have been in the absence of a top layer. Minimum reflection for a given €, occurs when

€, 8 [€,. Figure 2 shows graphically the relationship between ¢,, ¢, and <po>avg' As can be
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Fig. 2. Power reflection coefficients from dielectric layer
of random thickness.




seen, there are many combinations of € and €, which can give rise to-a required reflection
coefficient. On the basis of this model the increase in cross section seen at the longer wave-
lengths in‘Fig. 1 may be understood if the depth of the surface layer equals x/4Je_1 for a wave-
length between 1 and 10 m. For a crude measure of the depth one may substitute A = 5m and
4~/'€-1 = 5 to obtain a depth of one meter.

A model involving a gradual transition in electrical properties through the upper layer may
be more realistic. One that can be handled mathematically has a dielectric constant which varies
linearly with depth from a value of ) at the top to €, at the transition to the underlying layer.
The model is shown in Fig. 3. A linear variation in dielectric constant with depth leads to a
Stokes differential equation having the two solutions Ai(x) and Bi{x). The reflection coefficient

at normal incidence is given by

Po = [Det_/Det+|2 (11)
where
abe R abe abe . abe
_ . 1 i 4. 1 . 2 ia . 1
Det:t = Bl(— Ac ) + * Bl'(— N ) Al(— A€) - Al'(— e )
k /ez
abe abe abe . abe
—Jail-—5) = 22 an(- Bi(— 2)—“" Bi'f— —2
€ k A De k /€ Ae
N2
where
o = (KCae/m)/3
A€ = €2 - 61
b = depth of layer
k = 2n/A
A = wavelength in vacuo

}
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Fig. 3. Model of surface having linear variation
of dielectric constant with depth.
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TABLE i
RADAR CROSS SECTION PER UNIT SURFACE AREA (db)*

Wavelength Wavelength

Delay ¢ (cm) Delay ¢ (cm)

(psec) (deg) 3.8 23 68 (psec) (deg) 3.8 23 68
10.00 2.38 | T0.83 2.77 4.29 2250.00 | 36.29 | —14.18 | —16.78 | —18.41
20.00 3.37 —1.43 1.92 3.69 2500.00 | 38.33 | —14.58 | —17.08 | —18.81
30.00 4.12 -1.98 1.37 2.79 2750.00 | 40.28 | —14.88 | —17.43 | —19.2]
40.00 4.76 -2.38 0.87 2.09 3000.00 | 42.15 | —15.23 | -17.73 | —=19.5]
50.00 5.32 -2.73 0.42 1.49 3250.00 | 43.96 | —-15.53 | —18.08 | —19.8]
60.00 5.83 -3.03 0.02 0.99 3500.00 | 45.71 | —15.83 | ~18.38 | —20.01
70.00 6.30 -3.33 | —0.38 0.49 3750.00 | 47.41 | —16.13 | —18.63 | —20.21
80.00 6.73 -3.58 | -0.78 -0.01 4000.00 | 49.07 | —16.38 | —18.93 | —20.41
90.00 7.14 -3.83 [ -1.18 -0.51 4250.00 | 50.68 [ —16.63 | —~19.18 | —20.61

100.00 7.53 -4.03 | -1.53 —-0.91 4500.00 | 52.26 | —16.93 | —19.58 | —20.8]

125.00 8.42 ~4.58 | -~2.28 -1.9 4750.00 | 53.81 | =17.13 | =19.73 | -21.06
150.00 9.22 -5.03 | -3.03 -2.7 5000.00 | 55.32 | —17.43 | ~19.98 | -21.31

175.00 9.96 -5.38 | —~3.68 -3.4 5250.00 | 56.81 | —-17.73 | -20.28 | -21.6]

200.00 | 10.65 -5.73 | —-4.23 —-4.11 5500.00 | 58.27 | —17.98 | ~20.53 | —21.86

225.00 | 11.30 -6.03 | —4.73 —-4.71 5750.00 | 59.71 | —18.33 | —~20.83 | —-22.16

250.00 [ 11.92 -6.33 | -5.23 -5.4 6000.00 | 61.13 | —18.63 | -21.08 |} —22.5]

275.00 | 12.50 -6.68 | -~5.68 -5.86 6250.00 | 62.53 | —18.93 | ~21.43 | —-22.86

300.00 | 13.06 -6.93 | —~6.08 -6.41 6500.00 | 63.92 | —=19.33 | ~21.78 | -23.21

325.00 | 13.59 -7.23 | —6.43 —-6.81 6750.00 | 65.29 | —19.73 | ~22.18 | —23.56

350.00 | 14.1 —7.48 | -~6.78 -7.31 7000.00 | 66.64 | —20.13 | ~22.58 | —23.96

375.00 | 14.61 -7.73 | ~7.13 ~7.61 7250.00 | 67.98 | —20.53 | ~23.03 | —24.36

400.00 | 15.09 -7.98 | ~7.43 -8.06 7500.00 | 69.30 | —21.03 | ~23.43 | —24.71

425.00 | 15.56 -8.23 | ~7.73 -8.4 7750.00 | 70.62 | —21.43 | ~23.88 | —-25.16

450.00 | 16.01 -8.43 | ~8.03 -8.71 8000.00 | 71.92 | -21.88 | ~24.33 | —25.66

475.00 | 16.45 -8.63 | —8.43 -9.01 8250.00 | 73.21 | —22.38 | —24.83 | —26.16

500.00 | 16.88 -8.78 | -8.58 -9.31 8500.00 | 74.50 | —22.88 | —25.38 | —26.66

600.00 | 18.51 -9.33 | ~9.53 | —i0.31 8750.00 | 75.78 | —23.38 | —25.93 | —27.21

700.00 | 20.01 -9.83 | —10.43 | ~11.11 9000.00 | 77.05 | —23.98 | —26.53 | —27.81

800.00 | 21.40 | —-10.23 { —11.23 | =11.9} 9250.00 | 78.31 | —24.53 | ~27.18 | —28.46

900.00 | 22.72 | —10.63 | —11.83 | —12.61 9500.00 | 79.57 | —25.33 | —27.83 | —-29.06

1000.00 | 23.97 | -10.93 | —12.58 | —13.31 9750.00 | 80.82 | —-26.03 | -28.58 | —29.76
1100.00 | 25.15 | —=11.08 | —13.18 | —13.96 | 10000.00 | 82.07 | —26.93 | —29.43 | —30.61
1200.00 | 26.29 | —11.58 | —=13.63 | —14.61 | 10250.00 | 83.32 | —27.93 | —-30.48 | —31.61
1300.00 | 27.3% | —11.83 | —14.03 | —15.21 | 10500.00 | 84.56 | —29.33 } —31.58 | —32.61
1400.00 | 28.44 | —12.08 { —14.38 | —15.71 | 10750.00 | 85.80 | —30.83 | —33.08 | —34.06
1500.00 | 29.46 | —12.33 | ~14.68 | —-16.11 | 11000.00 | 87.04 | —32.03 | —34.93 | —35.81
1750.00 | 31.88 | —-13.33 | —15.88 | —-17.51 | 11250.00 | 88.27 | —32.83 | —37.58 | —38.41
2000.00 j 34.15 | —13.73 | -16.33 | -18.01

* Resolution in delay is opproximately 10 psec.
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Fig. 4. Reflection coefficient from surface having linear variation
of dielectric constant with depth vs layer thickness.

Some computational results for this case are shown in Fig.4. As can be seen, whenever A
is small compared with the transition region, the reflectivity is determined by the abrupt change
in dielectric constant at the top, i.e., by €g— 1. We see that the effect of the subsurface will
only be observable when A > 0.26b,

Other more complicated models can obviously be constructed. One might for instance have
an abrupt transition in dielectric constant at z = b (see Fig. 3), and the depth may be random as
in the homogeneous double layer model. One may, furthermore, also have to account for possible
local variations in the electrical properties of the lunar surface material in computing and inter-
preting the cross section observations.

The general conclusion which can be reached from this discussion is that the dielectric
constant of the upper surface layers is at most 2.64, but that a substantially lower value for

these layers would be completely compatible with the cross section data.

III. DELAY DISTRIBUTION OF ECHO POWER
A. Observations

A number of new echo power versus delay measurements have been made at 3.8 cm as well
as at 23 cm. At 23 cm these have included observations with circularly polarized and linearly
polarized illumination. Observations have been made with both linear and circular polarization
on reception. The results of the various experiments are described below with emphasis on

wavelength dependence and other clues to the nature of the lunar scattering mechanism.

1. The Polarized Circular Component

Measurements of the power returned as a function of delay have been carried out with good
resolution in delay both at 23-cm and at 3.8-cm wavelengths and are given in Table II. The ob-
servations have been normalized to a total cross section of 0.065. This is, as explained above,
a very accurate value for 23 cm and approximately true at 3.8 cm as well, A value of 0.065 was

also chosen for the 68-cm results presented for comparison in Table II, which gives the radar
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cross section per unit area of the surface expressed in db as a function of delay and angle of
incidence. In order to show the significance of the data more effectively, the cross sections

are plotted as a function of angle of incidence ¢ for ¢ < 20° in Fig.5 and for larger ¢ as a
function of cos ¢ in Fig. 6. It is clearly apparent that there is an appreciable wavelength depend-
ence of the return for small angles of incidence. Near normal incidence the dependence of cross

section per unit area on wavelength goes as

0.46

o~ A 3.8cm <A <23cm

(¢ near zero)

a~7\0'32 23cm <A <68cm

At grazing angles of incidence the wavelength dependence goes in the opposite direction as can

be seen from Fig. 6

-0.32

g~ A 3.8cm<A<23cm

(¢ near normal)

-0.26 23ecm < A < 68cm

/

For ¢ larger than 80° a transition to a cos ¢ dependence appears to take place, at least for the
68- and 23-cm data.

o~ A

We also observe that the curves obey a cos <p3 2 law for angles ¢ between 25° and about 80°.

2., The Depolarized Circular Component

Figure 7 shows the expected (polarized) and the depolarized backscattered power at 23 cm
plotted as a function of cos ¢ where ¢ is the angle of incidence. The relative gain of the two

orthogonal channels was checked by means of a

linearly polarized target transmitter, as well as 0

ki

by using the radar receivers as radiometers with

-4
the moon as a thermal source. The two channels
CIRCULAR TRANSMITTED AND RECEIVED

were found to have the same gain to within 10 .
percent.

The depolarized component decreases more
slowly with increasing angle of incidence thandoes
the polarized and may be approximated by a cos ¢

dependence over a wide range of angles of inci-

dence. The ratio of the two components at 23 cm 20

.~ POLARIZED CIRCULAR
is shown in Fig.8 and compared with the corre-
sponding ratio at 68 cm in Fig.9. No depolarized

data are available at a wavelength of 3.8cm. It 28

CROSS SECTION/UNIT SURFACE AREA (db)

appears from Fig.9 that the depolarization is in-

creasing somewhat with decreasing wavelength. -sz|-  DEPOLARIZED CIRCULAR

3. Linearly Polarized Components

The linear depolarization measurements at T T

1.0 06 0.4 0.2 0.1 0.06 004 0.02

23 cm were carried out by transmitting with a cos

fixed, usually vertical polarization. In order to . . .
Fig. 7. Cross section per unit surface area at

23 cm for polarized and depolarized circular
polarization at the receiver was rotated between refurns vs cos¢.

avoid difficulties with Faraday rotation, the linear
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Fig. 8. Ratio of polarized and depolarized returns at 23 cm for circular
transmitted polarization vs cos¢.
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sl LINEAR TRANSMITTED AND RECEIVED

Fig. 10. Cross section per unit surface area at 23 cm POLARIZED LINEAR

for polarized and depolarized linear returns vs cos¢.
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runs. The output power in each polarization would, therefore, vary sinusoidally about a mean
level, The least-mean-square sine wave was fitted to the data, and the mean and the depth of
modulation were determined to give the total power and the power ratios. Figure 10 shows the
polarized and the depolarized linear components again as a function of cos¢. Their ratio is
shown in Fig.11. A comparison of these results with those obtained with circularly polarized
waves is made below with the discussion of the data. Comparable results at other wavelengths
are not available.

The total power, i.e., the sum of the power in the polarized and depolarized components

should be identical functions of the angle of incidence. As a check, the 23-cm total power for the
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Fig. 11. Ratio of polarized and depolarized returns at 23 cm for linear
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two cases is plotted against cos ¢ in Fig. 12 and as may be seen, the agreement is reasonable,
The total power varies as cos cp3 2 to a very good approximation in either case, except near
grazing incidence where the angular dependence tends toward cos ¢.

Since the linear depolarization measurements described so far combine the return from a
complete ring of constant delay and hence include all possible directions of the local plane of
incidence, the depolarization could possibly arise as a result of different backscattering coef-
ficients for the two principal polarizations. In this case there should be little or no depolariza-
tion of a linearly polarized wave with electric field either in or perpendicular to the local plane
of incidence. To test this hypothesis the E-field was aligned with the libration axis of the moon
as shown in Fig. 13. By Fourier analyzing the data for the Doppler frequency component cor-
responding to the center of the lunar disk, areas such as the ones shown shaded in Fig. 13 may
be selected by delay-gating. In these areas the E-field lies in the local plane of incidence. The
polarized/depolarized power ratio observed under these circumstances is shown as a function
of cos ¢ in Fig. 14 for some 23-cm observations. As can be seen there is little difference between
these results and the ones obtained as an average over the complete range ring. It is therefore
concluded that the depolarization of linearly polarized waves cannot be explained by invoking a
difference in the two principal backscattering coefficients. Unfortunately, no similar measure-

ments appear to be available at wavelengths other than 23 cm for comparison,

4. Principal Backscattering Coefficients for Linear Polarization

The ratio of the two principal backscattering coefficients for linearly polarized waves has
been measured at both 23 and 3.8 cm. In both sets of observations the transmitted wave was
circularly polarized and two orthogonal linearly polarized components of the echo were studied
separately. At 23 cm the necessary resolution on the moon was achieved by an application of
the delay-Doppler technique as described above [see Hagfors, et al. (1965) for more details].

At 3.8 cm sufficient beam resolution was available to provide the necessary discrimination
between different areas. The results of the measurements are shpwn in Figs. 15 and 16. It

can be seen that the ratio of power in the compon\ent polari!z,gg'zc,athe plane of incidence to that
polarized JN the plane of incidence approaches 0.5 for the 23-cm data and 0.75 for the 3.8-cm

data near grazing angles of incidence.
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B. Interpretation

A uniform brightness over the disk of the moon would give rise to a cos ¢ variation in the
backscattering cross section. Hence only the depolarized returns approximate what one would
expect on the basis of a uniformly bright disk. The polarized return at all radio wavelengths
exhibits strong aspect sensitivity so that most of the returned power will arise in a region which
is near normal to the direction of the radar.

A reasonably good understanding of the angular dependence of the scattering can be obtained
by assuming that the boundary condition on the reflecting surface is well approximated by the
tangential plane assumption. This assumption involves replacing the surface at any point with a
tangential plane and assigning to that point the boundary field which would exist on that tangential
plane, The approximation is thought to be a reasonable one for the quasi-specular return, but
may not be adequate for the diffuse return nor for the depolarized return. Our view on this,
however, is contested by Beckmann (1967).

When the surface is described as quasi-smooth with a reflectivity at normal incidence of P
and when the surface is assumed to deviate from its mean shape at a point r by an amount

h(;) which is a stochastic function of ; we obtain

GRGT &
P =P, —————— p - d(Ar) Ar J (2KkAr sing)
r T 4 2 o (o]
87R" cos ¢ o
- exp F4k%h? cos® g [1 —plar)]) (12)

where

Pr = received power

d
I

transmitter power

G, = product of receiver and transmitter gains

distance to the moon

Jo() = the zero-order Bessel function
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k = 2n/A

plar) = hi—z <{h(r) hir + Ar))av
o

g.
2 _ 2
h " = Ch(r) >ang
For the moon it appears to be gafe, based on optical observations of the moon, to assume that

2kh  cos ¢ >>1 (13)

for all angles and wavelengths of practical interest. As long as p{Ar) can be expanded about

Ar = 0 in a power series

2
plar) =1 — 2L (pr(0)] + ... (14)

n

where

t
Q@
©

p'(0) = Ar =0
and as long as this is a good approximation to the correlation function within the range over which
the exponential term is appreciably different from zero, we obtain for the power scattered per

unit area at an angle ¢

2
P .G .GrA
P = I 1 5 - exp [—tanch/Zhj(-p")] %134— {15}
2cos ¢ ho(—p") 647 R
This can be shown to be equivalent to the following expression.
PG, .G A°
- 1 T"TR
P % 3 cosg PO 3.4 (16)
@ 647" R

where p(y) is the probability density for the angle 3 between the normal to a surface element
and the mean normal to the surface. Under these conditions, which are equivalent to those of
geometrical optics, it is a relatively straightforward affair to identify mean slope and rms slope

of the lunar surface from the power/delay data. Assume for example that
2 2
plAr) = exp(—Ar /Zdo) (17)
and hence that
2
! =
p 1/d0
The rms slope along any direction on the surface is

(tx)rms - (ty)rms B ho/do (18)

The "mean slope" or the mean value of the tangent to the angle between the normal to an arbitrary

surface element and the normal to the mean surface becomes
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‘ /5 b h
_(m\172 Yo [o]
(tanq?)avg =(3) —do =1.25 —do . (19)

The rms of the tangent to this angle becomes

h

h
}1/2=«/78£=1.4139— . (20)
[o] o)

{Gan® o>,
Let us next turn to cases where there is no such simple relationship between true and ap-
parent surface slopes. This occurs whenever the conditions spelled out above are not met.
Physically, the breakdown of the conditions means that the surface has a considerable amount
of fine structure of a lateral scale not necessarily as small as the wavelength but of a vertical
scale smaller than the wavelength of the exploring wave. This will bring about structural detail
in the correlation function near the origin which will not appreciably influence the value of the
integral [Eq.(12)] determining the backscattered power. This fine structure could, on the other
hand, well be completely dominant in determining the true rms slope of the surface. In this
situation the slope distribution derived from direct geometric optic analysis can only apply to
apparent slopes resulting from the smoothing effect imposed by the scale of the wavelength of
the scattered radiation. This smoothing scale, unfortunately, is a function of the angle of in-
cidence of the waves on the surface. To see this it is only necessary to refer again to the integral
[Eq. {12)] giving the backscattered power per unit area as a function of angle of incidence ¢. When
¢ is close to zero, the integral is determined primarily by a range of Ar extending from 0 to Are,

where Are is the solution of the equation

4k2ho2 cos2<p (1 —plar)]et . (21)

For somewhat larger angles of incidence ¢ it will be the Bessel function that limits the
range of Ar over which significant contributions to the integral are obtained. The range of Ar

as determined by the "width" of the Bessel function extends from 0 to Ar and it is given, at

B
least in order of magnitude, by
1

Arg ™ L sing

(22)
To relate the range of scales on the surface to the range of separations Ar we can expand p(Ar)
into a power spectrum
1 00
plAr) = T So xdx Flx) JO(AI',K) . (23)
The spectrum of random rough surfaces usually decreases monotonically. As examples, con-
sider the Gaussian autocorrelation function (17) for which we obtain

F(x) = 21dZ exp(~x2d’/2) (24)

whereas for the exponential autocorrelation function often used [Hughes (1962)], i.e., exp (—Ar/dl),
we obtain

Fix) = 2rd; 1] 2 + o273/ (25)
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Since the fine structure in the correlation function in the range of Ar either from 0 to Ar_ or
from 0 to ArB cannot appreciably affect the integral in Eq. (12), we conclude that an approxima-
tion to the received power is obtained by '"filtering' out the high frequency components in Eq. (23)

by writing
1 M
pe(Ar) = 5= B ‘S; kdx F(x) Jo(Ar,x) (26)

where B is a normalizing constant and

1 /Are Arg > Ar,

B

KM=

1/ArB Arg <Ar, (27)

B

This approximation can only be regarded as somewhat crude. A filtering function should have
been applied to Eq. (23), and this filtering function would not necessarily have the rectangular
shape implied by Eq.(26}). For this reason the procedure discussed serves only to illustrate

the gradual decrease in the scale of the effective irregularities with increasing angle of incidence.

Also, because of the truncation, hj‘ must be adjusted somewhat to an effective he2 through

2

h

2 .2 ("M - "y

he = ho S\ deF(x)/S xdxF(x) = B . (28)
() o
For a Gaussian autocorrelation function,

NZkh  cos ¢ h

——q  Whentang < xffd—

K = o o

M ho
k sing when tang > \lf—d-— . (29)

o

As long as 3V is large in comparison with 1/d0 there will be little effect of the truncation, since
it makes little difference whethe1 lthe integration in Eq.(26) is carried to infinity or to x,, under
these circumstances. This condition on KM is closely related to the assumption of a deep and
gently undulating phase screen, i.e., to kho >1 and ho/d0 < 1. For the Gaussian autocorrelation
function it is therefore seen that the same range of scales will contribute to the scattered power
at all angles of incidence.

In certain situations, however, the power spectrum F(x) decays sufficiently slowly with «
so that the effective autocorrelation function pe(Ar) appreciably changes form with <M Since
Kk is increasing with the angle of incidence, the smallest scale of those responsible for back-
scattering is decreasing with increasing angles of incidence. This in turn brings about an in-
crease in the effective slope with increasing angles of incidence. When this effect is appreciable,
the interpretation of the backscattered power as a function of angle of incidence in terms of a
geometric optics model [Rea, et al. {1964}] is.of doubtful value.

The effective slope of the filtered version of the surface may be defined in analogy with the

Gaussian autocorrelation case as follows

h2

2

h x

- ——th 110) = —OS\ M K3F(K) dx . (30)
2 ee 4T

deO (o)
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Let us finally outline briefly a procedure which, if realizable, would lead to a somewhat
more meaningful estimate of the characteristics of a rough surface. First, we observe that for
very small angles ¢ the scales involved do not change appreciably with ¢ [see Eq.(24)]. In

M
fore be defined by comparison with the Gaussian autocorrelation case. If the observation is

the region of small ¢ a reasonably well defined apparent slope on the scale of 27« may there-

repeated at a number of wavelengths in the small ¢ region, we will be able to define a slope

function
2 2
h h K
flepy) = —5 = z‘j?g M CE( de (31)
deO (o}

The spectrum F(x) can then be determined from

F(x) = const k> df/dx . (32)

The lunar data, unfortunately, are such that they will not fit a simple model of the geometrical
optics type. A reasonably good fit is obtained by using the correlation function of Eq. (25). In

this case one obtains for the backscattering cross section per unit surface area

C-.p ¢ 2
o= ——2 (1+c_2__a“ @ (33)

2 cos ¢ cos ¢

-3/2
)3

where C = (d1>\/4nh§)2.
Figure 17 represents an attempt to fit the shape of the curves of expression (33) to the data

of Table II by adjusting the reflection coefficient Py and the constant C for a best {fit.
The data fit expression (33) quite well over a certain range of angles near normal incidence.

Best fit is obtained with the parameters shown in Table IIIL.

RADAR CROSS SECTION /UNIT AREA (db)

|

o 2 4 6 8 10 12 14 16 T 2
¢ (deg)

Fig. 17. Fit of data to exponential correlation law at 3.8-, 23- and
68-cm wavelength.
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TABLE Il
PARAMETERS FOR BEST FIT OF DATA TO THEORY

Wavelength
(cm) C Po
68 95 0. 0697
23 65 0.0648
3.8 40 0.0500

Whereas the fit at 68 and 23 cm is excellent, the fit at 3.8 cm is rather poor and the parameters
quoted may therefore be somewhat in error. At 3.8 cm it appears that the simple exponential
correlation function is not a very good description of the surface scattering. Obviously, a better

fit could be obtained by using a "composite" correlation function of the form [Beckman (1964)]

-lar|/q;

N
plAr) = Z a, e (34)

i=1

as long as a sufficient number of parameters oy and di are allowed.

We also note that the normal incidence reflection coefficients appearing in the third column
of Table III for 68- and 23-cm data are in very good agreement with those derived from total
cross section considerations (see Sec. [IL.A.2).

Since the correlation function which appears to fit the data best for the two longer wavelengths
is such that a rms slope cannot easily be assigned to the surface, p'(0) being infinite, we apply
the theory just outlined to derive a measure of slopes and a spectral resolution for the surface
undulations,

For the 68 and 23 cm data where the exponential correlation function appears to provide an
accurate description, the solution to Eq. (21) —assuming deep phase modulation — is

1 _ 4k2h02 Cosz(p _ 2k cosiq 4 coszgo (35)

Arg dy NT WT

Hence, even for normal incidence, the scales of importance extend down to the size of the wave-

length of the scattered wave. The slope function defined in Eq. (31) now becomes

hZ

o M -2 ~-1.2
f(KM) = —Z—di— N1+ (dixM) —{d

L I (36)

When di"M is large, as appears to be the case here, we obtain approximately

2

h 2
_ e  cos"o ;
fep) = 2 ™ 23C0ey - (37)
aZ M

This appears to imply that the angles corresponding to the rms slopes at the scale of 68 and 23 cm,
respectively, are 6° and 7°. These values are noticeably lower than the 10° to 12° one would tend
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to derive on the basis of geometrical optics. The discrepancy only reflects the difficulty of
assigning a slope parameter to the lunar surface structure.

Next we proceed to fit a power law to the spectral function F(x). This can be done with
somewhat greater confidence than the assignment of a slope to the surface since the limit of

integration <M enters in a less critical manner. The fitting procedure results in a law of the

form

F(k) = const'<.3'7 (38)

for the spectral resolution of the surface undulations in the lateral size region 20 to 70 cm. We
are, unfortunately, not aware of any data with which this spectral resolution can be compared.

Let us next turn our attention to data pertaining to oblique angles of incidence, i.e., angles
in excess of some 30°. For these angles it does not appear that the smooth undulating surface
model is a good one to describe the scattering mechanism. In particular, the polarization data
are difficult to explain without invoking the scattering from discrete, individual, wavelength-
sized objects strewn over the surface.

The depolarization of circularly polarized scattered waves for circularly polarized illumina-
tion may be thought of as arising in at least one of two different ways. There may be a systematic
difference in the backscattering coefficients for waves polarized in or perpendicular to the local
plane of incidence (the two principal linear polarizations). There may be a depolarization of the
two principal linearly polarized waves in the sense that illumination in one principal linear po-
larization gives rise to scattered power in the orthogonal linear polarization also. The results
given in Sec. III.A.3 show that the former of the two possibilities does occur. On the other hand,
the results in Sec. III.A.4 show that the latter type of mechanism is also present. In order to
evaluate the relative importance of these mechanisms in causing depolarization of circularly
polarized waves, we may argue as follows.

Let the backscattering matrix of a surface element be
s = (39)

so that the linearly polarized fields in and across the local plane of incidence, E1 and EZ’ re-

spectively, are related to the incident fields E'1 and E’2 through

Ey T1p Ti2] [B)
E, Y21 T2z B,
The corresponding connection between circularly polarized waves is

E r +r

. . ,
g1 P —ilrg—rpy) L, gy T, ey, vyl PEL

I

Bt

E, Ty mTa tilr mry) L ryy gy tilrg, —ryy) 1
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The ratio of depolarized to polarized received circular components when the illumination is
circular hence becomes

. 2
{ryy =1y, —ilry, + 1,

Depol
S - . > (41)
Urygtryy +ilrg, =1 )%
In the particular case when Tyy =Ty, = 0, we obtain
2
Depol _ <1711 221D
._P_EOO_ = (42)

Clryy + 1™

If the phases of the two reflection coefficients are the same, the circular depolarized-to-~polarized
power ratio may be expressed directly in terms of the ratio of the two principal linear power
backscattering coefficients p” and pl as follows

(43)

Depol _ ( NP TNP) >2
Pol ~
TR

Figure 18 shows a plot of the expected ratio of depolarized and polarized power for circular
polarization as a function of the ratio p | l/pl' Note that in this case there would be no depolariza-~
tion of the two principal linearly polarized components. We also note that a systematic phase
difference of the two reflection coefficients p 1 and pl would lead to a preferential circular po-
larization of the scattered wave for linearly polarized illumination. This possibility was excluded
at the outset of our discussion as being physically implausible.

Figure 18 shows that the difference in the

reflection coefficients p,, and p, actually ob- 40
served (see Figs. 15 andlli(:) islinadequate to i
account for the depolarization of circularly
polarized waves. It is, therefore, concluded
that the fact that Ty, and r,, are nonzero, as *L
indicated by the observationalresults shown in
Fig.14, must also be an important factor in
producing depolarization. 20—

In order to continue the discussion it is
convenient at this point to introduce a specific
model which may be adjusted to reproduce the
observed data. Imagine that the backscatter-

ing arises in part from specular reflectors

RATIO POLARIZED/DEPOLARIZED CIRCULARS (db)

which do not depolarize at all. This type of

i i i - 1 \ I A B L L
mechanism clearly is dominant near the sub 5 o v o o T

radar point, as indicated previously. With RATIO OF PRINCIPAL SCATTERING COEFFICIENTS

increasing angles of incidence we postulate

Fig. 18. Plot of ratio of polarized and depolarized
power for circularly polarized illumination as a
function of the ratio of the backscattering coef-
terers. These discrete scatterers may, as a ficients of the two principal linear polarizations.

that the scattering occurs increasingly from a

discrete structure which acts as single scat-
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The

assumption of single scattering rather than multiple scattering to account for the polarization

first approximation, be thought of as linear dipoles of more or less random orientation.

effects is well justified by the very low reflectivity of the lunar surface material,

A linear dipole will depolarize a circularly polarized wave completely, i.e., the energy
scattered in right and left polarizations will be of equal strength. By observing the ratio of
polarized to depolarized power as above, it is, therefore, possible to estimate the relative

amount of power Pr scattered by the reflection mechanism, and the power P by the dipole

S
scatter mechanism. The ratio of polarized to depolarized power for circular illumination

becomes

Pol r *
Depol 1 P
2

(44)

Figure 19 is a plot of this ratio as a function of the ratio PS/(Pr + PS). Comparison of the results
in Fig. 7 with the curve in Fig. 19, shows that at 23-cm wavelength about 65 percent of the power
returned at oblique angles of incidence is to be ascribed to the dipole scattering mechanism. A
collection of randomly oriented dipoles illuminated with a linearly polarized wave will return 25
percent of the scattered power in the orthogonal mode, In this case, therefore, the ratio of

polarized to depolarized power for circularly polarized waves becomes

Pol r

+
Depol ~ 1
4

(45)

In Fig. 20 this polarization ratio is plotted as a function of the fraction of the total power scattered
by dipoles. Comparison with Fig. 11 shows that again the fraction of the total scattered power

that must be ascribed to the dipoles is in the vicinity of 70 percent. This agreement between the
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Fig. 20. Plot of ratio of polarized and depolarized
power for linear illumination plotted as a function
of the fraction of power scattered by dipoles.

Fig. 19. Plot of ratio of polarized and depolarized
power for circularly polarized illumination as a func~
tion of the fraction of power scattered by dipoles.
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conclusions drawn from linearly and circularly polarized data lends credence to the validity of
the model assumed.

Our somewhat naive model of the scattering mechanism at oblique incidence is so far unable
to account for a preferential backscattering when the E field is in the plane of incidence, as shown
by the observational results of Figs. 15 and 16. At least two modifications may be made to the
model to yield this effect. It may be that the dipoles behave as if oriented preferentially in the
vertical direction on the lunar surface. An alternative model was suggested by Hagfors, et al.
(1965), in the form of a tenuous layer covering the small-scale irregularities. The preferential
scattering of waves with the E field in the plane of incidence was explained as a preferential
transmission of these waves through the tenuous top layer. The latter model requires that a
large fraction of the scatterers be buried underneath the tenuous layer. This assumption, un-
fortunately, does not appear to be in agreement with the recent Surveyor I and III pictures if
these are to be considered as representative of the lunar surface in general. The most recent

analysis of Surveyor I pictures indicates that the cumulative rock distribution is of the form*

N, =5 107 . y~&1! (46a)
whereas the Surveyor III pictures appear to fit a law of the form™
N, =3- 108 . 7256 (46b)

where N = cumulative number of grains per 100 m2 and y = diameter of grains in mm. The number

density of rocks or grains per m2 with diameter between y and y + dy is

6 -3.11
7

ni(y) dy = 1.055 - 10 dy (47a)

7.68 . 100 . y~3-56 4 (47b)

n3(y) dy

: . . - . 2.
while the geometric cross section of each grain expressed in m” is

T 2 -6
a'g =z 10 . (48)

Let us next assume that each grain has a radar cross section which is a certain constant fraction
R of its geometrical cross section, when the diameter exceeds the wavelength, and zero other-

wise, The cross section per unit area is, therefore, found to be

_ 7R -0.14 _ _-0.114

947 4 9.59 {ymin max } (49a)
_ 7R -0.56 -0.56

03 =1 13.71 {ymin ~ Y max } (49D)

For Ymin W€ may choose the wavelength of observation and for Ymax W€ substitute a number large

enough to make the last term in Eq. (49) vanish. The results are (note A in mm!)

o =R 7.53- A"0-11 (50a)

o, =R 10.77 . A"0-56 (50b)

*"Surveyor |il, A Preliminary Report," SP-146, National Aeronautics and Space Administration (June, 1967).
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TABLE IV

COMPARISON OF OBSERVED AND COMPUTED CROSS SECTIONS
PER UNIT SURFACE AREA

A Computed o, Computed °, Observed at
(cm) (db) (db) ¢ = 40°
68 —-6.22 —17.42 -19.21
23 -5.70 —14.78 ~17.43

3.8 —4.83 -10.39 —14.88

This is to be compared with the wavelength dependence observed in Sec. III.A.1, which is inter-
mediate between the results of Egs. (50a) and (50b). Assuming the reflectivity R to be the same
as that of the moon as a whole, i.e., 0.065, we obtain the results shown in Table IV which also
shows the cross section per unit surface area actually observed at an angle of incidence of 40 °.
It can be seen from this table that the number of rocks on the surface as derived from both the
Surveyor I and Surveyor III pictures are more than enough to account for the return at oblique
angles of incidence. Hence, if the areas photographed are typical of the lunar surface, the ear-
lier interpretation of the radar data in terms of buried single scatterers [Hagfors, et al. (1965)]
must be rejected, since the scatterers seen photographically rest largely on top of the surface
rather than underneath. The presence of grains and rocks on top of the surface rather than
buried inside the surface material, however, does not rule out the presence of a double layer
surface model. It means only that the backscattering at oblique angles of incidence takes place
without appreciable penetration of the top layer. The double layer model is still attractive in
certain respects, both to explain a wavelength dependence of the quasi-specular return, as well
as to account for the somewhat lower dielectric constant of the lunar surface material which is
generally deduced from radiometric observations of the thermal emission from the moon {see
Sec. IV).

IV. RADIOMETRIC OBSERVATIONS

The radiometric observation which has the most direct bearing on the question of the elec~
trical properties of the lunar surface relates to the polarization of the thermal emission across
the lunar disk. Plots of the degree of polarization observed as a function of offset from the center
of the lunar disk are shown in Fig. 21, where the offset is measured in units of the lunar radius.
In Fig. 22 the observations are compared with the curves to be expected on the basis of a transi-
tion from a homogeneous medium to vacuum. As can be seen, the fit is not very impressive.
However, as shown in QPR (1966:4), the effect of the polar diagram is to depress the polariza-
tion curve for offsets in excess of 0.8, With this in mind one would deduce a dielectric constant
of ¢ = 1.7 from the data. Since this is completely incompatible with the reflectivity at normal
incidence, some satisfactory explanation must be sought. In QPR (1966:4) it was suggested that
surface undulations and a tenuous top layer could account for the discrepancy. The simple, ho-
mogeneous, tenuous top layer is effective in reducing the polarization at very oblique angles of

incidence, say for offsets in excess of 0.8, but not for offsets less than 0.7 and it is difficult to
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Fig. 21. Degree of linear polarization emitted by Fig. 22, Degree of linear polarization emitted by the
the moon as a function of antenna offset from the moon as a function of antenna offset from the center
center, compared with simple one-layer model.

reconcile the radar and the radiometric data on this basis alone. It may be possible to reach
complete agreement on the basis of a more complicated surface structure such as the one dis~
cussed in connection with Eq. {11). The emission from such a layer has not yet been evaluated
and presents an awkward mathematical problem. The presence of surface undulations may
decrease the polarization of the emission somewhat as shown in QPR (1966:4), but far less than
enough to account for the emission on the basis of a dielectric constant for the surface of 2.6 to
2.7. One further possibility which has not been discussed in previous reports results from the
presence of rocks and pebbles on the surface which could emit unpolarized radiation. With a
surface dielectric constant of 2.6 it would be required that 60 percent of the emission from the
surface originate via an unpolarized mechanism in order for the polarization to be as low as is
observed. This is considerably in excess of what one would expect on the basis of the radar data
as well as from the Surveyor photographs. Quantitative agreement between radiometric and
radar results, therefore, still seems to be lacking. It appears likely that a combination of the

three mechanisms described must be invoked to reach quantitative agreement.

V. SUMMARY

The data obtained in this study together with earlier results have been shown to be compatible
with a model of the lunar surface which is gently undulating and which is characterized by a mean
slope of less than 10 ° when measured on the scale of tens of centimeters. The uppermost layers
of this surface are compatible with a material having a relative dielectric constant not more than
2.6 with radiometric emission data tending to indicate a value lower than this. All the polariza-
tion data obtained by radar were explained on the basis of scattering from rocks or pebbles strewn
over the basic, relatively smooth and undulating surface. It was shown that an amount of rock-

like structure such as that observed in the Surveyor I and III photographs is quite adequate to
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account for the scattering at oblique angles of incidence. Since the depolarized backscattered
radiation is assumed to originate entirely from this structure, the strength of the backscatter-
ing at oblique angles of incidence appears to be a direct measure of the surface density of this

material.
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